

Sveučilište u Rijeci
University of Rijeka
http://www.uniri.hr

Polytechnica: Journal of Technology Education, Volume 2, Number 1 (2018)
Politehnika: Časopis za tehnički odgoj i obrazovanje, Volumen 2, Broj 1 (2018)

Politehnika
Polytechnica

http://www.politehnika.uniri.hr
cte@uniri.hr

* Paper is accepted for the 20
th

 CARNET Users Conference CUC, 2018, Šibenik, Croatia

Stručni članak
Professional article

UDK 004.42
004.43

Introducing a Dataflow visual programming language for

understanding program execution*

Marin Aglić Čuvić

Faculty of Science

University of Split

Ruđera Boškovića 33, 21000 Split

marin.aglic.cuvic@pmfst.hr

Abstract

Regardless of the programming experience, the understanding of the program execution is mandatory if
a programmer is to write a code. Therefore, it is vitally important for novice programmers to construct
correct mental models of the execution of the notional machine. To this end, many program
visualizations have been developed over the last years. However, novice programmers often focus on
learning the syntax of a programming language rather than getting to grips with the programming itself.
Dataflow visual programming languages (DFVPL) allow us to build programs by connecting blocks with
arcs. In this paper we present our own DFVPL that exhibits a high level of responsiveness to user inputs
and enables the user to control the execution of the program.

Keywords: dataflow; dataflow visual programming; learning programming; program visualizations.

1. Introduction

In order to learn programming, novices are often
required to learn the syntax and semantics of a
programming language and develop an
understanding of how programs are executed at
the level of abstraction provided by the language
itself (Hidalgo-Céspedes, Marín-Raventós, Lara-
Villagrán, 2016), (Gomes, Mendes, 2007). Given
the fact that students usually find learning to

program overwhelming for them, they tend to
focus on learning the syntax rather than learning
to program. Furthermore, novices often gain
partial or incomplete understanding of
programming concepts, which impedes the
acquisition of new knowledge and is likely to
result in students failing to solve their
programming tasks. Researchers have been
dealing with programming misconceptions for
decades, simultaneously developing new

Aglić Čuvić, M.: Introducing a Dataflow visual programming language for understanding program execution, 35-40

36

programming languages and tools that would
facilitate the process of learning programming.

Scratch is probably the best-known
programming language developed for this
purpose. Since it is a block-based programming
language, where students drag and drop blocks
into their appropriate slots, the syntax of the
language has been almost disregarded (Maloney
et al., 2010). This allows students to focus on
building programs rather than learning the
syntax. However, university students quickly
outgrow or get bored of Scratch, and express
their interest in an industry level programming
language.

Apart from programming languages,
researchers have developed program
visualizations that graphically depict how
programs are executed. The purpose of these
systems is to provide novice programmers with
the correct mental model of the notional
machine. The notional machine is an abstract
"construct formed from concepts provided by the
programming language" (Čuvić, Maras,
Mladenović, 2017) which gives a sufficiently
detailed insight into the program execution
(Sorva, 2013). A mental model of a notional
machine is a mental representation of that
machine held by a programmer.

Just like the aforementioned programming
language Scratch, Dataflow Visual Programming
Languages (DFVPL) are block-based languages
connected by arcs (also called wires) where data
flows between blocks (Johnston, Hanna, Millar,
2004), (Hils, 1992). A program in a DFVPL has a
graph-like structure. Similarly to Scratch, DFVPLs
almost completely eliminate the need for learning
the language syntax. Furthermore, they make it
simple for the user to see the transformation of
data as it flows, in the manner that is similar to
how program visualizations depict the state of
variables. Since DFVPLs make it easy to construct
programs, there have been numerous
applications of DFVPLs, such as the construction
of user interfaces, image processing, music,
graphics, general-purpose programming and
education (Hils, 1992).

Although these languages simplify the
construction of programs, they do not allow the

user to examine how these complex functions are
actually implemented. Furthermore, only a small
subset of them, e.g. Show and Tell (Hils, 1992),
enable novice programmers to learn
programming. We believe that some of the key
features of program visualizations included in a
DFVLP may facilitate the process of learning to
program. Therefore, we present a DFVLP that i)
allows the user to control the execution of the
language while visualizing which expressions are
currently executed, ii) explicitly displays the
control-flow of a program, and iii) provides blocks
that are conceptually similar to Python
instructions.

2. Program visualizations and
education

During the process of writing a program,
programmers usually consult their mental model
of the notional machine in order to understand
and draw inferences about the behaviour of the
program (Sorva, 2013). However, when it comes
to novice programmers, these mental
representations are often faulty and incomplete,
thus preventing them from solving their
programming tasks. They are often formed
intuitively based on analogies and prior
experience with similar systems. The problem is
that even though it is simple to construct a
mental model, changing it takes much more
effort (Schumacher, Czerwinski, 1992). Therefore,
it is necessary for teachers to provide students
with a correct mental model prior to learning
programming. This is the reason why program
visualizations have been developed.

Program visualization is a term that generally
refers to the use of graphical elements for
depicting the execution of the notional machine
(Hidalgo-Céspedes, Marín-Raventós, Lara-
Villagrán, 2016). Since the notional machine is
composed of the concepts related to a
programming language, each language may have
its own notional machine. In his literature review
(Sorva, Karavirta, Malmi, 2013), Sorva identified
forty-six different program visualizations that

Aglić Čuvić, M.: Introducing a Dataflow visual programming language for understanding program execution, 35-40

37

appeared from 1979 to 2013. This list was
expanded by J. Hidalgo-Céspedes (Hidalgo-
Céspedes, Marín-Raventós, Lara-Villagrán, 2016)
who added the ones emerging in the period
between 2013 and 2016. Some of the best-known
program visualizations are UUhistle (Sorva, Sirkia,
2010), Online Python Tutor (Guo, 2013) and Jeliot
3 (Moreno, Myller, Sutinen, 2004).

UUhistle is a visualization system that not only
visualizes program execution, but also allows
users to assume the role of the machine and
simulate program execution (Sorva, Sirkia, 2010).
Online Python Tutor is a web-based visualization
system that currently supports eight
programming languages (counting Python 2 and
Python 3 as two different languages), but it could
be embedded into other web pages as well (Guo,
2013). Moreover, Online Python Tutor has a live
programming mode which updates the graphical
elements of the visualization as the user types the
code, thus allowing users to observe the changes
in program behavior in real-time. Jeliot 3 is a
visualization system that was developed many
years ago. Its goal is to facilitate the learning of
both procedural and object-oriented
programming (Moreno, Myller, Sutinen, 2004).

All program visualizations enable the users to
write and visualize their own code, step by step
through program execution, and to show the
current state of variables during program
execution. These are the core features that
permit the system to visualize program execution
and therefore allow for the user's basic
interactivity with the system. This is increasingly
important if we take into consideration the fact
that novices might want to return to a certain
point in a program and repeat some steps. For
this very reason, these features were
incorporated in our DFVPL.

It is worth noting that it is necessary to keep
the visualizations as simple as possible and to
avoid having too much animations. As Moreno
observed in reference to Jeliot 3, too much
repetitions might reduce an animation to a
"movie of moving boxes" (Moreno, Joy, 2007),
where students no longer think about what is
happening with the notional machine and may
miss out on their meaning.

3. Dataflow visual programming
languages

Dataflow visual programming languages (DFVPL)
have been studied for more than three decades
(Gauvin, Paquet, Freiman, 2015). DFVPLs are in
fact block-based languages where blocks (also
known as nodes) are connected by arcs (or wires).
Therefore, a program in a DFVPL is a directed
graph through which data flow between blocks
and each block has a function that may allow for
the transformation of the received data
(Johnston, Hanna, Millar, 2004), (Hils, 1992).
However, it is possible to have blocks that accept
no input data and those that produce no output
data.

Different DFVPLs have been developed for
various application domains. In these DFVPLs,
blocks provide functions that are specific to the
intended use of the DFVPL. This is quite similar to
the concept of a notional machine. For example,
Orange3 ("Orange3", 2018) is a DFVPL that
provides block for statistical analysis and machine
learning. Hence, blocks perform high level
functions such as training neural networks or
displaying data in a dataset. This allows a simpler
way of constructing programs that, in the case of
Orange3, is analysing the data. Other application
domains of DFVPLs have been already mentioned
in the introductory part of this paper. In his
paper, Hils (Hils, 1992) grouped DFVPLs according
to their application domain and the number of
design alternatives. In regard to DFVPL design
alternatives, we will only give a brief summary of
i) modes of execution and ii) level of liveliness, as
these are the most significant for this discussion.

3.1. Modes of execution

The execution of nodes in a DFVPL may be either
data-driven or demand-driven (Hils, 1992). When
it comes to data-driven execution, the execution
of nodes starts as soon as the data on the input
nodes become available. In this execution mode,
the data flow downstream. In accordance with
the terminology (Hils, 1992), downstream nodes
are those that are found by following the node's

Aglić Čuvić, M.: Introducing a Dataflow visual programming language for understanding program execution, 35-40

38

output arcs, while upstream nodes are defined as
those that are found by going backwards via
node's input arcs. Conversely, in demand-driven
execution, the execution of a certain node
requires data from another node's output arc. If
needed, the node in question requests data from
upstream nodes through its input arcs and waits
until the data become available. Once the data
are available, the node sends them through its
output arcs to other nodes.

In a data-driven execution mode, all nodes are
executed, even though some of the computations
are not used (Hils, 1992). By contrast, in a
demand-driven execution mode, only those
nodes whose data is requested are executed.
However, demand-driven execution is more
complex and it is used less often.

3.2. Levels of liveliness

Liveliness is measured using a four-level scale
(Hils, 1992). At the "informative" level, which is
the first one, visual representations are used as
documentation for the program. The second level
is termed "informative and significant". At this
level, visual representations of the program are
executable. In comparison with the second level,
the third one is enhanced by responsiveness,
which means that the program is executed each
time the user enters input data or edits the
program. Finally, the fourth level refers to the
systems that are "live". At this level of liveliness,
the system continually updates its display to show
the new data that are being processed, as well as
results.

4. A Dataflow Visual Programming
Language for novice programmers

At the Faculty of Science in Split, we have
developed a DFVPL prototype aimed at helping
novice programmers understand program
execution. The DFVPL is built with JavaScript and
it is completely web-based.

When designing our DFVPL we wanted to i)
have a system that can be used to demonstrate
Python programs ii) allow the user to control the

execution of program in a step-by-step fashion iii)
have a system that has a high level of liveliness.

In what follows, we will discuss our design
decisions.

4.1. The case of Python

Python is a general-purpose programming
language that is often used in introductory
programming courses at universities due to its
simple syntax. Since the language is widely used
in introductory programming courses, we wanted
our DFVPL to be conceptually similar to Python.
One of the problems that we faced was related to
the implementation of simple branching
statements into our language. Branching as it is
done in Python does not apply well to the
dataflow model used by our language since there
is no data flowing in an if-else statement (tertiary
operators excluded). Furthermore, dataflow
languages typically use blocks, such as merge and
switch, for branching (due to space limitations,
see reference for details). Therefore, our solution
was to implement special control-flow blocks that
correspond to if, if-else, elif and elif-else
statements. Since these control-blocks do not
allow data-flow, they must be connected to
variables or other nodes that might produce data,
or the ones whose data can be inferred while
parsing.

Furthermore, the way certain blocks function
has been adjusted so as to simulate Python
statements, e.g. print. When the print block is
used, it will print out the result in a special
program output area. Print can also have an
arbitrary number of inputs which are then printed
in accordance with their y-position in the
workspace.

4.2. The Graph Engine

In designing our DFVPL, our second aim was to
enable users to control the execution of the
program in a step-by-step fashion that is visually
enhanced, thus allowing for the display of blocks
that are currently being executed. This is
something that is typical of program visualizations
in which currently executed lines are pointed to

Aglić Čuvić, M.: Introducing a Dataflow visual programming language for understanding program execution, 35-40

39

or highlighted. This is not characteristic of
DFVPLs. Furthermore, when dealing with control
structures such as if-then-else statements, we
wanted to draw users' attention to the fact that a
certain branch will not be executed. Program
visualizations make this possible by taking into
account which branch is going to be executed
when calculating the total number of steps for
the user.

This lead to the development of a component
we call the Graph Engine (GE). The Graph Engine
is a central component of the DFVPL that consists
of a parser, execution service and background
execution service.

The input to the parser is a program that the
users create. The parser then transforms the
graph into a key-value pair data structure. Each
key is a step number, and the value contains all of
the nodes that will be executed in a certain step.
Therefore, the number of keys determines the
number of steps. In case a for loop is found during
parsing, the appropriate number of times the
parser embeds of the loop body into the resulting
Map.

During parsing, when a branching node is
discovered, the background execution service is
called. The task of the background execution
service is to mark arcs as either inactive or active,
depending on which arcs are going to be
executed by the user. Nodes that are downstream
from the inactive arcs are ignored by the parser.

Finally, the execution service is a component
of the GE that executes the nodes when the user
steps through the program. If the user steps
forward through the program, the execution
service executes only the next step (the previous
being already executed). In case of going
backwards through the program, default values
are restored to the nodes following the new step.

4.3. The liveliness of the system

As discussed earlier in this paper, there are four
levels of liveliness. Our DFVPL reparses and re-
executes the program each time the user enters a
new value or modifies the program. The
execution service re-executes the program up to
the current execution step at which the user is

currently. In addition to that, all of the visuals and
variable values are updated accordingly. Taking
into account the previous discussion, it is fair to
conclude that our DFVPL falls into the third level

of liveliness at least.

5. Conclusion

In this paper we provided a brief insight into
notional machines and program visualizations and
illustrated the importance of constructing a
correct mental model of the notional machine.
Afterwards, we discussed Dataflow Visual
Programming Languages (DFVPLs) and some of
their features. Finally, we presented the DFVPL
that has been developed at the Faculty of Science
in Split. Its main features are as follows: i) blocks
are functionally very similar to Python
statements, ii) the system is at a high level of
liveliness, and iii) the system supports some of
the features typical of program visualizations.

References

Čuvić, M. A., Maras, J., Mladenović, S. (2017).

Extending the object-oriented notional
machine notation with inheritance,
polymorphism, and GUI events. Proceedings of
40

th
 International Convention on Information

and Communication Technology, Electronics
and Microelectronics, MIPRO 2017.

Gauvin, S., Paquet, M., Freiman, V. (2015). Vizwik
- visual data flow programming and its
educational implications. In S. Carliner, C.
Fulford & N. Ostashewski (Eds.), Proceedings
of EdMedia 2015--World Conference on
Educational Media and Technology, 1594-
1600. Montreal, Quebec, Canada: Association
for the Advancement of Computing in
Education (AACE).

Gomes, A., Mendes, A. J. N. (2007). Learning to
program-difficulties and solutions.
International Conference on Engineering
Education - ICEE 2007, Coimbra, Portugal.

Aglić Čuvić, M.: Introducing a Dataflow visual programming language for understanding program execution, 35-40

40

Guo, P. J. (2013). Online python tutor:
Embeddable web-based program visualization
for cs education. Proceedings of the 44

th
 ACM

Technical Symposium on Computer Science
Education, 579-584.

Hidalgo-Céspedes, J., Marín-Raventós, G., Lara-
Villagrán, V. (2016). Learning principles in
program visualizations: a systematic literature
review. 2016 IEEE Frontiers in Education
Conference (FIE), 1-9. IEEE.

Hils, D. D. (1992). Visual languages and computing
survey: Data flow visual programming
languages. Journal of Visual Languages &
Computing, 3(1), 69-101.

Johnston, W. M., Hanna, J. R. P., Millar, R. J.
(2004). Advances in Dataflow Programming
Languages. ACM Computing Surveys, 36(1), 1-
34.

Maloney, J., Resnick, M., Rusk, N., Silverman, B.,
Eastmond, E. (2010). The Scratch
Programming Language and Environment.
ACM Transactions on Computing Education,
10(4), 1-15.

Moreno, A., Joy, M. S. (2007). Jeliot 3 in a
Demanding Educational Setting. Electronic
Notes in Theoretical Computer Science, 178,
51-59.

Moreno, A., Myller, N., Sutinen, E. (2004).
Visualizing Programs with Jeliot 3. Proceedings
of the working conference on Advanced visual
interfaces, 373-376.

Orange3 (2018). Retrieved 30. 04. 2018. from
https://orange.biolab.si.

Schumacher, R. M., Czerwinski, M. P. (1992).
Mental Models and the Acquisition of Expert
Knowledge. In: Hoffman R. R. (eds), The
Psychology of Expertise, 61-79. Springer, New
York.

Sorva, J. (2013). Notional machines and
introductory programming education. ACM
Transactions on Computing Education, 13(2),
1-31.

Sorva, J., Karavirta, V., Malmi, L. (2013). A Review
of Generic Program Visualization Systems for
Introductory Programming Education. ACM
Transactions on Computing Education, 13(4),
1-64.

Sorva, J., Sirkia, T. (2010). UUhistle: a software
tool for visual program simulation.
Proceedings of the 10

th
 Koli Calling

International Conference on Computing
Education Research, 49-54.

